MIMOSA 用于分子优化的多约束分子采样
为了发现新药,设计新分子很重要。采样分子优化是用于从输入分子中寻找具有改善药物特性的分子的尝试。arXiv.org上的分优一篇最新论文提出了一种基于采样的策略来优化分子的多个特性。 名为MultI约束分子扩增(MIMOSA)的多约框架使用输入分子作为初始猜测。然后,束分在分子拓扑结构和子结构类型预测(子结构可以是采样原子或环)上训练了两个图神经网络。通过添加,用于替换或删除子结构来生成新分子。分优 马尔可夫链蒙特卡罗方法用于选择有希望的多约候选者用于下一次迭代。在优化溶解度和生物活性时,束分MIMOSA的采样分子优化性能超过了几个最先进的基准。 分子优化是加速药物发现的基本任务,其目标是生成新的有效分子,该分子在保持与输入分子相似性的同时,最大化多种药物的特性。现有的生成模型和强化学习方法取得了初步的成功,但是在同时优化多种药物特性方面仍然面临困难。为了解决这些挑战,我们提出了多重约束分子简化(MIMOSA)方法,这是一种使用输入分子作为初始猜测并从目标分布中采样分子的采样框架。MIMOSA首先为分子拓扑和子结构类型预测预训练两个属性不可知图神经网络(GNN),其中子结构可以是原子或单环。对于每次迭代,MIMOSA使用GNN的预测,并采用三种基本的子结构操作(添加,替换,删除)来生成新分子和相关权重。权重可以编码多个约束,包括相似性和药物特性约束,然后我们选择有希望的分子进行下一次迭代。MIMOSA可以灵活编码多个属性和相似性约束,并可以有效地生成满足各种属性约束的新分子,并且就成功率而言,相对于最佳基准可以实现高达49.6%的相对改进。MIMOSA 用于分子优化的用于多约束分子采样
桑琴蓉导读 为了发现新药,设计新分子很重要。分优分子优化是多约从输入分子中寻找具有改善药物特性的分子的尝试。arXiv org上的束分一篇最新论文提出了一种基于采
-
上一篇
-
下一篇
- 最近发表
- 随机阅读
-
- 美润医疗生产的仁和可立克医用口罩不合格 被罚2万元
- 运力饱和、行业内卷 2024年网约车行业驶向何处?
- 高校图书馆借阅量下降 背后是阅读方式多元化
- 国家医保局:2023年全年约谈药品平均降价超40%
- 美日韩“三重奏”,背后各有算盘?
- 长三角铁路2024年春运方案出台 春运40天预计发送旅客8900万人次
- 亿缕阳光|敬礼是信仰 回礼是希望
- 新疆壮大优势产业 推进经济高质量发展
- 内蒙古体育庙会年味儿足
- 999个!2023年全国示范性老年友好型社区名单公布
- 社会救助体系建设取得新突破
- 十部门:部署联合开展2024年“春暖农民工”服务行动
- 天津市市场监管委督查组对食品安全“守查保”行动进行督查
- 我国已累计培养1100多万名研究生
- 畅通人岗匹配“高速路”(人民时评)
- 流感高发 乙流防治热点问题10问10答
- 来安持续优化医保服务暖民心_
- 沈阳台企开足马力 新年奋战“开门红”
- 在蓉台胞赏川剧看变脸 喜迎龙年新春
- 一条步行街 一篇大文章(人民时评)
- 搜索
-
- 友情链接
-