科学家通过人工智能在海量天文数据中“挖宝”
面对海量的挖宝天文数据,人工智能可以大显身手。科学中国科学院上海天文台研究员葛健带领的家通据中国际团队通过人工智能深度学习方法,在国际斯隆数字巡天项目第三期释放的过人工智类星体光谱数据中,成功“挖宝”。量天 5月15日,文数国际天文学权威期刊《皇家天文学会月报》刊登了相关研究成果。挖宝 据葛健介绍,科学宇宙冷气体和尘埃中的家通据中“中性碳吸收体”,是过人工智研究星系形成和演化的重要探针。但中性碳吸收线的量天信号微弱且极其稀少,需要在海量的文数类星体光谱数据中才能找到,使用传统的挖宝搜寻方法耗时费力,如同“大海捞针”。科学 研究团队通过使用人工智能的家通据中深度学习方法,设计神经网络,生成基于实际观测的中性碳吸收线特征的大量仿真样本,去训练深度学习神经网络,并使用这些被“训练好”的深度学习神经网络,在国际斯隆数字巡天项目第三期释放的数据中搜寻“中性碳吸收体”。 通过这一创新方法,研究团队很快发现了107例宇宙早期星系内的冷气体云块有“中性碳吸收体”。这一样本数是此前获得的最大样本数的近两倍,且探测到了更多比以前更微弱的信号。 发现了这么多冷气体的“中性碳吸收体”,研究团队把这些光谱叠加到一起,极大提高了探测各种金属元素丰度的能力,并能直接测量尘埃吸附导致的部分金属丰度缺失。 研究结果表明,早在宇宙只有约30亿年的年龄时(宇宙现在的年龄为约138亿年),这些携带“中性碳吸收体”探针的早期星系,已经过了快速物理和化学演化,进入了介于大麦哲伦矮星系和银河系之间的物理和化学演化状态,产生了大量的金属,同时部分金属被吸附到尘埃上,产生观测到的“尘埃红化”结果。 “我们这一发现,独立验证了近期詹姆斯·韦伯太空望远镜首次在宇宙最早的恒星中,探测到类似钻石的碳尘埃的新发现,预示部分星系的演化比预期要快得多,这将对现有的星系形成和演化模型形成挑战。”葛健说。 业内专家认为,此项研究是人工智能在天文大数据领域应用的一次重要突破。人工智能深度学习方法,在多领域图像识别以及微弱信号探测中,具有巨大的应用价值和潜力。未来,有望在海量的天文数据中挖到更多的“宝贝”。
- 最近发表
- 随机阅读
-
- 国家统计局:前两月城镇新增就业108万人
- 《嗨!營業中3》郭泓志化身航海王 海上備餐飆出高收視
- (有片)拿破崙曾戴過的黑氈帽將被拍賣 或拍出超50萬歐元
- 今天越晚越冷!醫盤點5保暖小物 切記別長時間使用、蓋電熱毯睡覺
- 学习重刷题、评价重考试 校外培训质量参差不齐
- 天津一大楼突发大火,目击者:大火疑从三楼餐厅开始往上蹿
- 天下晨間新聞 鴻海大漲背後,跟Apple Car大戰特斯拉有關?|天下雜誌
- 天下晨間新聞 決戰美國大選,選前民調怎麼說?|天下雜誌
- 数值“忽高忽低” 难道家里的血压计不准?
- 雲林北港朝天宮「全台香火最旺」 南投紫南宮1原因沒上榜!
- 泉州市一院口腔医生绘漫画 科普知识获点赞
- 台積電真的貴嗎?4張圖表分析,小資族該不該入手2330|天下雜誌
- 浙江宁波开展消费市场秩序专项治理行动
- 拿破侖標誌性雙角帽拍出創紀錄的190萬歐元
- 罹病時間越久越易出現痛風石 一定要開刀取石頭嗎?
- 宿州:“口袋公园”让城市美起来
- 国务院办公厅:鼓励高校体育单招招生计划向冰雪运动倾斜
- 運動納入生活、養成習慣 物理治療師推薦「零存整付運動法」
- 晋江刑警:扛起背包再出发 守护“平安晋江”
- 高中英師再批課綱 經典文學換「辦桌、媽祖遶境」
- 搜索
-
- 友情链接
-